

Applied Real Options Analysis

For the Finance and Decision Professional

Dan Zoppo

SSZ Corp
www.sszcorp.com

August 25, 2021

Downloadable Models

Real Options and More

Weblog at Freehold Finance

<http://freeholdfinance.com>

dan@freeholdfinance.com

- 1 Introduction - Why Real Option Analysis?
- 2 Basics of Real Options: Some Theory and Simple Examples
- 3 LSM Algorithm
- 4 Example model in Analytica

Introduction

Why Real Options?

- *Project Management* minimizes risks via managerial flexibility
- *Traditional Valuation* does not include the value of flexibility
- Integrate project management with financial valuation

Introduction

Real Option Uses

- Valuation
 - Pure Valuation - reporting
 - Investment Decisions
- Optimal Controls and Policies
 - Determine optimal operating policies

Definition (Eduardo S. Schwartz - UCLA)

Real options are contingent decisions that provide the opportunity to make a decision after uncertainty unfolds.

- Future actions in response to new information drive option value
- Firms can be thought of as bundles of real options
- ROA captures how businesses actually operate

Some Examples

- Options to Expand
 - Netflix starting a movie studio
- Option to Switch
 - Ethanol Plants at the start of the pandemic in 2020 mothballed plants or switched to producing hand sanitizer.
- Option to Learn
 - R&D in biotech, pharmaceuticals, semi-conductors, etc.
- Option to wait
 - Delay new store openings

Traditional Valuation Approach - DCF

Recall:

$$\text{Static NPV} = \sum_{t=0}^T \rho^t C_t$$

- C_t is the cash flow in period t
- $\rho^t = \frac{1}{(1+r)^t}$ is the discount factor
- $T < \infty$ is the finite terminal time period
- Static NPV does *not* depend on actions

Now include optionality:

$$\text{Dynamic NPV} = \max_{\{a_t\} \in \mathcal{A}} \sum_{t=0}^T \rho^t C_t(s_t, a_t)$$

Now include optionality:

$$\text{Dynamic NPV} = \max_{\{a_t\} \in \mathcal{A}} \sum_{t=0}^T \rho^t C_t(s_t, a_t)$$

- $\{a_t\} := \{a_0, a_1, \dots, a_T\} \in \mathcal{A}$ is the sequence of actions in the set of all possible action sequences

Now include optionality:

$$\text{Dynamic NPV} = \max_{\{a_t\} \in \mathcal{A}} \sum_{t=0}^T \rho^t C_t(s_t, a_t)$$

- $\{a_t\} := \{a_0, a_1, \dots, a_T\} \in \mathcal{A}$ is the sequence of actions in the set of all possible action sequences
- Find action sequence to maximize the project's value

Now include optionality:

$$\text{Dynamic NPV} = \max_{\{a_t\} \in \mathcal{A}} \sum_{t=0}^T \rho^t C_t(s_t, a_t)$$

- $\{a_t\} := \{a_0, a_1, \dots, a_T\} \in \mathcal{A}$ is the sequence of actions in the set of all possible action sequences
- Find action sequence to maximize the project's value
- s_t is the state of the project in time period t

Now include optionality:

$$\text{Dynamic NPV} = \max_{\{a_t\} \in \mathcal{A}} \sum_{t=0}^T \rho^t C_t(s_t, a_t)$$

- $\{a_t\} := \{a_0, a_1, \dots, a_T\} \in \mathcal{A}$ is the sequence of actions in the set of all possible action sequences
- Find action sequence to maximize the project's value
- s_t is the state of the project in time period t
- $C_t(s_t, a_t)$ is the cash flow in period t and is now a function of the current state and the action taken

A Simple Example

Power Plant - turn on or off

A Simple Example

Power Plant - turn on or off

- Discounted Cash Flows: 150, -100, 175

A Simple Example

Power Plant - turn on or off

- Discounted Cash Flows: 150, -100, 175
- Optionality: $\max\{C_t, 0\}$

A Simple Example

Power Plant - turn on or off

- Discounted Cash Flows: 150, -100, 175
- Optionality: $\max\{C_t, 0\}$
- $static\ NPV = 150 - 100 + 175 = 225$

A Simple Example

Power Plant - turn on or off

- Discounted Cash Flows: 150, -100, 175
- Optionality: $\max\{C_t, 0\}$
- $\text{static } NPV = 150 - 100 + 175 = 225$
- $\text{Dynamic } NPV = 150 - 0 + 175 = 325$

A Simple Example

Power Plant - turn on or off

- Discounted Cash Flows: 150, -100, 175
- Optionality: $\max\{C_t, 0\}$
- $\text{static } NPV = 150 - 100 + 175 = 225$
- $\text{Dynamic } NPV = 150 - 0 + 175 = 325$
- $\text{Option Value} = 325 - 225 = 100$

The Two Types of Options

The Two Types of Options

- European Options

The Two Types of Options

- European Options
 - Single Exercise Point unaffected by other decisions

The Two Types of Options

- European Options
 - Single Exercise Point unaffected by other decisions
 - Strips of European options for multiple cash flow dates

The Two Types of Options

- European Options
 - Single Exercise Point unaffected by other decisions
 - Strips of European options for multiple cash flow dates
 - Simple and a good first approximation

The Two Types of Options

- European Options
 - Single Exercise Point unaffected by other decisions
 - Strips of European options for multiple cash flow dates
 - Simple and a good first approximation
- American Options

The Two Types of Options

- European Options
 - Single Exercise Point unaffected by other decisions
 - Strips of European options for multiple cash flow dates
 - Simple and a good first approximation
- American Options
 - Have multiple exercise points - even continuous

The Two Types of Options

- European Options
 - Single Exercise Point unaffected by other decisions
 - Strips of European options for multiple cash flow dates
 - Simple and a good first approximation
- American Options
 - Have multiple exercise points - even continuous
 - Intertemporal linkages

The Two Types of Options

- European Options
 - Single Exercise Point unaffected by other decisions
 - Strips of European options for multiple cash flow dates
 - Simple and a good first approximation
- American Options
 - Have multiple exercise points - even continuous
 - Intertemporal linkages
 - Path dependent constraints

How to Solve Real Option Models

- Binomial Trees/Lattices
- Partial Differential Equations - Finite Difference Methods
- Regression Monte Carlo

How to Structure American Options

Recall the sequence Problem:

$$V_0(s_0) = \max_{\{a_t\} \in \mathcal{A}} \sum_{t=0}^T \rho^t C_t(s_t, a_t)$$

Transform it into a recursive problem:

$$V_0(s_0) = C_0(s_0, a_0) + \sum_{t=1}^T \rho^t C_t(s_t, a_t)$$

$$V_0(s_0) = C_0(s_0, a_0) + \rho V_1(s_1)$$

How to Structure American Options

Bellman Equation

Generalize previous slide and add uncertainty:

$$V_t(s_t) = \max_{a_t \in A(s_t)} (C_t(s_t, a_t) + \rho \mathbb{E}[V_{t+1}(s_{t+1})|s_t])$$

- $C(s_t, a_t)$ is current cash flow or contribution
- $s_{t+1} = f(s_t, a_t)$ is the state transition function
- $\mathbb{E}[V_{t+1}(s_{t+1})|s_t]$ is the *continuation value*
- $\mathbb{E}[V_{t+1}(s_{t+1})|s_t] = ?$

Use Ordinary Least Squares:

$$\mathbb{E}[V_{t+1}(s_{t+1})|s_t] \approx \sum_{i=1}^m \beta_i \phi_i(s_t)$$

- ϕ_i are the basis functions
- β_i are the regression coefficients
- OLS is one option of many for approximation

States can be decomposed into two types:

① Endogenous States

- States that the action or decision will influence
- E.g. modes of operations (Operating, suspended, mothballed, abandoned)

② Exogenous States

- The component of the state that is not influenced directly by the decision
- E.g. prices and costs
- Usually the stochastic variables
- Uncertainty plays a critical role

LSM Algorithm

Putting it Together

LSM Algorithm

- ① Define states, actions, basis functions
- ② Simulate the stochastic states
- ③ Calculate the Terminal Cash Flow and set as initial estimate of the project value
- ④ Iterate from $T - 1$ to 1:
 - ① Discount Next Period's Project Value
 - ② Regress discounted PV against current period's basis
 - ③ Estimate Continuation Values
 - ④ Form Bellman Equation
 - ⑤ Determine Optimal Action
 - ⑥ Update Project Value Estimate
- ⑤ Discount PV and average across all runs to determine period 1's Continuation Value
- ⑥ Solve period 0's Bellman Equation

Analytica LSM Algorithm

Object - Dynamic Iteration

Variable Dynamic_Iteration Units:

Title: Dynamic Iteration

Description: LSM Algorithm using Dynamic Function

expr

```
Definition: Dynamic(
    /* Discount next period cash flow */
    local nextVal := Discount_Factor * Self[Time + 1];

    /* Estimate Continuation Value */
    local regCoeff := Regression(nextVal, Basis, Run, Basis_Term);
    local continVal := Sum(regCoeff * Basis, Basis_Term);

    /* Find optimal action */
    local bellman := Cash_Flow + continVal[State = State_Transition];
    local bestAction := ArgMax(bellman, Action);

    /* Optimal Period Cash Flows */
    (Cash_Flow + nextVal[State = State_Transition])[Action = bestAction];

    /* Set terminal value */
    Terminal_Cash_Flow,
    reverse:True
)
```