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Introduction
Why Real Options?

Project Management minimizes risks via managerial flexibility
Traditional Valuation does not include the value of flexibility
Integrate project management with financial valuation
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Introduction
Real Option Uses

Valuation
Pure Valuation - reporting
Investment Decisions

Optimal Controls and Policies
Determine optimal operating policies
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What are Real Options

Definition (Eduardo S. Schwartz - UCLA)
Real options are contingent decisions that provide the opportunity
to make a decision after uncertainty unfolds.

Future actions in response to new information drive option
value
Firms can be thought of as bundles of real options
ROA captures how businesses actually operate
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Some Examples

Options to Expand
Netflix starting a movie studio

Option to Switch
Ethanol Plants at the start of the pandemic in 2020
mothballed plants or switched to producing hand sanitizer.

Option to Learn
R&D in biotech, pharmaceuticals, semi-conductors, etc.

Option to wait
Delay new store openings
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Traditional Valuation Approach - DCF

Recall:

Static NPV =
T∑

t=0
ρtCt

Ct is the cash flow in period t
ρt = 1

(1+r)t is the discount factor
T <∞ is the finite terminal time period
Static NPV does not depend on actions
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DCF + Real Options

Now include optionality:

Dynamic NPV = max
{at}∈A

T∑
t=0

ρtCt(st , at)

{at} := {a0, a1, ..., aT} ∈ A is the sequence of actions in the
set of all possible action sequences
Find action sequence to maximize the project’s value
st is the state of the project in time period t
Ct(st , at) is the cash flow in period t and is now a function of
the current state and the action taken
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A Simple Example

Power Plant - turn on or off

Discounted Cash Flows: 150, -100, 175
Optionality: max{Ct , 0}
static NPV = 150− 100 + 175 = 225
Dynamic NPV = 150− 0 + 175 = 325
Option Value = 325− 225 = 100
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The Two Types of Options

European Options
Single Exercise Point unaffected by other decisions
Strips of European options for multiple cash flow dates
Simple and a good first approximation

American Options
Have multiple exercise points - even continuous
Intertemporal linkages
Path dependent constraints
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How to Solve Real Option Models

Binomial Trees/Lattices
Partial Differential Equations - Finite Difference Methods
Regression Monte Carlo
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How to Structure American Options

Recall the sequence Problem:

V0(s0) = max
{at}∈A

T∑
t=0

ρtCt(st , at)

Transform it into a recursive problem:

V0(s0) = C0(s0, a0) +
T∑

t=1
ρtCt(st , at)

V0(s0) = C0(s0, a0) + ρV1(s1)
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How to Structure American Options
Bellman Equation

Generalize previous slide and add uncertainty:

Vt(st) = max
at∈A(st)

(Ct(st , at) + ρE[Vt+1(st+1)|st ])

C(st , at) is current cash flow or contribution
st+1 = f (st , at) is the state transition function
E[Vt+1(st+1)|st ] is the continuation value
E[Vt+1(st+1)|st ] = ?
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Estimate Continuation Values

Use Ordinary Least Squares:

E[Vt+1(st+1)|st ] ≈
m∑

i=1
βiφi (st)

φi are the basis functions
βi are the regression coefficients
OLS is one option of many for approximation
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States

States can be decomposed into two types:
1 Endogenous States

States that the action or decision will influence
E.g. modes of operations (Operating, suspended, mothballed,
abandoned)

2 Exogenous States
The component of the state that is not influenced directly by
the decision
E.g. prices and costs
Usually the stochastic variables
Uncertainty plays a critical role
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Putting it Together

LSM Algorithm
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Putting it Together
LSM Algorithm

1 Define states, actions, basis functions
2 Simulate the stochastic states
3 Calculate the Terminal Cash Flow and set as initial estimate

of the project value
4 Iterate from T − 1 to 1:

1 Discount Next Period’s Project Value
2 Regress discounted PV against current period’s basis
3 Estimate Continuation Values
4 Form Bellman Equation
5 Determine Optimal Action
6 Update Project Value Estimate

5 Discount PV and average across all runs to determine period
1’s Continuation Value

6 Solve period 0’s Bellman Equation

Applied Real Options Analysis



Analytica LSM Algorithm
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